The atomic structure of low-index surfaces of the intermetallic compound InPd.

نویسندگان

  • G M McGuirk
  • J Ledieu
  • É Gaudry
  • M-C de Weerd
  • M Hahne
  • P Gille
  • D C A Ivarsson
  • M Armbrüster
  • J Ardini
  • G Held
  • F Maccherozzi
  • A Bayer
  • M Lowe
  • K Pussi
  • R D Diehl
  • V Fournée
چکیده

The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and "global" measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of Nanocrystalline Ni50Al50-xMox (X=0-5) Intermetallic Compound During Mechanical Alloying Process

In the present study, nanocrystalline Ni50Al50-xMox (X = 0, 0.5, 1, 2.5, 5) intermetallic compound was produced through mechanical alloying of nickel, aluminum, and molybdenum powders. AlNi compounds with good and attractive properties such as high melting point, high strength to weight ratio and high corrosion resistance especially at high temperatures have attracted the attention of many rese...

متن کامل

Effect of Welding Heat Input on the Intermetallic Compound Layer and Mechanical Properties in Arc Welding-brazing Dissimilar Joining of Aluminum Alloy to Galvanized Steel

The effect of weld heat input on the formation of intermetallic compound (IMCs) layer during arc welding–brazing of aluminium and steel dissimilar alloys, was investigated through both finite element method (FEM) numerical simulations and experimental measurements. The results of FEM analysis as well as welding experiments indicated that increasing weld heat input increases the thickness of IMC...

متن کامل

Effect of Mo Addition on Nanostructured Ni50Al50 Intermetallic Compound Synthesized by Mechanical Alloying

The mechanical alloying process was used to synthesize the Ni50Al50−xMox nanocrystalline intermetallic compound using pure Ni and Al elemental powder. This process was carried out in the presence of various Mo contents as a micro-alloying element for various milling times. Structural changes of powder particles during mechanical alloying were studied by X-ray diffractometry (XRD) and scanning e...

متن کامل

Control of Formation of Intermetallic Compound in Dissimilar Joints Aluminum-steel

The elimination of the FexAly type phases was considered the solution to low ductility presented in aluminum-steel welded joints. Recently, the researches do not seek the suppression but the control of the thickness of these compounds. In this work, Al-Fe joints were manufactured by solid state and fusion welding, looking for controlling the formation of intermetallic comp...

متن کامل

Investigating the Joining of Ni3Al Intermetallic Compound, using Transient Liquid Phase (TLP) Method with Cu Interlayer

In this study, joining of Ni3Al intermetallic compounds using the transient liquid phase (TLP) process with Cu interlayer was investigated. The binding process was carried out in a vacuum furnace at a temperature of 1050 °C for different times of 30, 60, 90 and 120 minutes. The effect of time variation on microstructure and mechanical properties of the joint zone was investigated. The EDS analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 143 7  شماره 

صفحات  -

تاریخ انتشار 2015